Lawrence Livermore National Laboratory

Determining the (n, γ) cross section of ¹⁵³Gd using surrogate reactions

10/23/07

Nicholas Scielzo

s-process

¹⁵²Gd and ¹⁵⁴Gd cannot be produced by the *r*-process and therefore these abundances can be used to investigate the *s*-process which has typical temperatures of ~30 keV

These abundances are influenced by (n,γ) cross sections at energies 0-200 keV in branch-point nuclei such as 153 Gd (for which the time scales for neutron capture and β -decay can be comparable)

temperature kT = 30 keV

(n,γ) cross section

Direct measurements using 153 Gd difficult because of radioactivity (with ~100 keV $_{\gamma}$ -rays in 50% of decays):

1 milligram of ¹⁵³Gd \Leftrightarrow 3.5 Curies ($t_{1/2}$ =240 days)

Well-suited for surrogate measurement because of neighboring stable Gd isotopes that can be used as targets for measurement and benchmarks.

Challenges:

small energy range of interest – experimental resolution is critical

enriched sample of ¹⁵⁴Gd is 67% isotopically pure

(n,γ) cross section

Direct measurements using 153 Gd difficult because of radioactivity (with ~100 keV γ -rays in 50% of decays):

1 milligram of ¹⁵³Gd \Leftrightarrow 3.5 Curies ($t_{1/2}$ =240 days)

Well-suited for surrogate measurement because of neighboring stable Gd isotopes that can be used as targets for measurement and benchmarks.

Challenges:

small energy range of interest – experimental resolution is critical

enriched sample of ¹⁵⁴Gd is 67% isotopically pure

Surrogate measurement

"Desired" reaction

153**G**d

"Surrogate" reaction

$$\sigma_{\alpha\chi}(E) = \sum_{J,\Pi} \sigma_{\alpha}^{CN}(E,J,\Pi) \cdot G_{\chi}^{CN}(E,J,\Pi)$$

$$\sigma_{\alpha\chi}(E) = \sum_{J,\Pi} \sigma_{\alpha}^{CN}(E,J,\Pi) \cdot G_{\chi}^{CN}(E,J,\Pi) \qquad P_{\chi}(E) = \frac{N_{p\gamma}(E)}{\varepsilon_{\gamma} N_{p}(E)} = \sum_{J,\Pi} F_{\alpha}^{CN}(E,J,\Pi) \cdot G_{\chi}^{CN}(E,J,\Pi)$$
We measure this ratio

These exit channel probabilities are identical!

Need theory to reconcile differences in σ_{α}^{CN} and F_{α}^{CN}

Experimental Set-up with STARS-LiBerACE

Excite Gd nuclei ($S_n \approx 8-9$ MeV) through inelastic (p, p') scattering

Detect scattered *p* in segmented silicon detector array

Coincident detection of characteristic γ-rays using an array of Compton-suppressed "clover" HPGe detectors

Experimental Set-up with STARS-LiBerACE

Excite Gd nuclei ($S_n \approx 8-9$ MeV) through inelastic (p, p') scattering

Detect scattered p in segmented silicon detector array

Coincident detection of characteristic γ-rays using an array of Compton-suppressed "clover" HPGe detectors

Particle Detection

Highly-segmented, chilled silicon array for particle identification and precise energy determination

Detector response must be very well understood: 65 keV resolution for 22 MeV beam energy is <0.3%!

Particle Detection

Highly-segmented, chilled silicon array for particle identification and precise energy determination

Detector response must be very well understood: 65 keV resolution for 22 MeV beam energy is <0.3%!

450 - 400 -

γ-ray Detection

As nucleus de-excites, many γ-ray cascades pass through the lowest excited states

All $8^+\rightarrow 6^+$, $6^+\rightarrow 4^+$, $4^+\rightarrow 2^+$, and $2^+\rightarrow 0^+$ transition γ -rays observed with good statistics.

γ-ray Detection

As nucleus de-excites, many γ-ray cascades pass through the lowest excited states

All $8^+ \rightarrow 6^+$, $6^+ \rightarrow 4^+$, $4^+ \rightarrow 2^+$, and $2^+ \rightarrow 0^+$ transition γ -rays observed with good statistics.

Towards an (n,γ) cross section

Data analysis for ¹⁵⁸Gd...

p- γ coincidences as a function of ¹⁵⁸Gd* excitation energy show drop as S_n is crossed

Need to study whether there are weak γ-ray lines at the transitions of interest

JII population mismatch must be modeled

We are interested in low energies so the Weisskopf-Ewing limit is not satisfied and angular-momentum considerations are important

 $J\Pi$ populations between n-induced reaction and surrogate reaction can be very different so we need input from theorists to interpret results as (n,γ) cross-section and estimate sensitivity to $J\Pi$ population mismatch

Data can guide the prediction of the $J\Pi$ population and the extraction of an (n,γ) cross-section...

- Data extends into energy region where Weisskopf-Ewing limit is valid (>3 MeV) and can be used as an additional normalization for the calculations
- Relative intensities of discrete γ -ray transitions can constrain the calculated $J\Pi$ distribution
- Angular dependence of γ -ray emission may also give information on $J\Pi$ distributions
- Data taken with ¹⁵⁶Gd and ¹⁵⁸Gd targets provide benchmarks to test the theory and experiment

Corrections to data

Need to account for contribution from (p, pn) reactions on Gd contaminants with one additional neutron.

Target

		¹⁵⁴ Gd	¹⁵⁶ Gd	¹⁵⁸ Gd
Composition	¹⁵² Gd	0.08%	0.00%	0.00%
	¹⁵⁴ Gd	66.53%	0.11%	0.00%
	¹⁵⁵ Gd	17.50%	1.96%	0.96%
	¹⁵⁶ Gd	7.32%	93.79%	1.70%
	¹⁵⁷ Gd	3.24%	2.53%	3.56%
	¹⁵⁸ Gd	3.45%	1.20%	92.00%
	160 G d	1 88%	0.41%	1 82%

Correction for the ¹⁵⁴Gd target is at the energy of interest...

Summary

- Surrogate reactions can provide new opportunities to determine cross-sections for reactions that are difficult or impossible to measure directly
- Analysis underway to determine (n, γ) cross-section for ¹⁵³Gd which is of interest to the astrophysics community
- Need theory to determine effect of $J\Pi$ distribution mismatch and to interpret results
- Technique will be benchmarked against precise direct measurements and reliability of surrogate approach tested at low energy

Experimental Collaborators

Lawrence Livermore National Laboratory

L.A. Bernstein, D.L. Bleuel (PD), J.T. Burke, S.R. Lesher (PD), E.B. Norman, N.D. Scielzo (Lawrence Fellow), S. Sheets (PD)

U.C. Berkeley and Lawrence Berkeley National Laboratory

M.S. Basunia, R.M. Clark, P. Fallon, J. Gibelin (PD), B. Lyles (GS), M.A. McMahan, L. Moretto, L.W. Phair, E. Rodriguez-Vieitez (GS), M. Wiedeking (PD)

University of Richmond

J.M. Allmond (PD), C. Beausang

